DIFFERENT SUTURE CONFIGURATIONS FOR TRANSTIBIAL PULLOUT REPAIR FOR MEDIAL MENISCUS ROOT TEARS YIELD IMPROVED MID-TERM CLINICAL OUTCOMES: A SYSTEMATIC REVIEW

G.R. JACKSON1, J.S. LEE1, S. ASIF1, D. SACHDEV1, E.S. MAMERI1,2,3, D.J. KAPLAN1, Z.A. KHAN1, H. JAWANDA1, A.K. BATRA1, O.A. OBIOHA1, D.M. KNAPIK4, F. FAMILIARI5, R.F. LAPRADE6, J. CHAHLA1

1Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
2Instituto Brasil de Tecnologia da Saúde, Rio de Janeiro, Brazil
3Department of Orthopedics and Traumatology, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
4Department of Orthopaedic Surgery, Washington University and Barnes-Jewish Orthopedic Center, Chesterfield, MO, USA
5Department of Orthopaedic and Trauma Surgery, Magna Graecia University, Catanzaro, Italy
6Twin Cities Orthopedics, Edina, MN, USA

ABSTRACT – Objective: This work aimed to compare the clinical outcomes following medial meniscus posterior root repairs using different suture configuration repair techniques.

Materials and Methods: A comprehensive literature search was conducted by querying EMBASE, PubMed, and Scopus computerized databases from databases inception through November 2022, in accordance with the 2020 Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Level of evidence I, II, or III studies that reported clinical outcomes undergoing transtibial pullout repair for MMPR tears were included (simple stitch, all-inside-dependent modified Mason-Allen, modified reverse Mason-Allen, and cinch-loop). Methodological quality assessment of the included studies was performed using the Newcastle-Ottawa Scale and the National Institute of Health Quality Assessment.

Results: Twelve studies, including 495 patients, met the inclusion/exclusion criteria. The reported mean post-operative Lysholm score among simple stitch patients ranged from 73.4 to 92.5, vs. 84.7 to 85.9 in all-inside-dependent modified Mason-Allen patients, 71.5-87.6 in modified reverse Mason-Allen patients, and 81.8-88.8 in cinch-loop patients. The reported mean improvement in IKDC score among simple stitch patients ranged between 59.2 and 91.8, vs. 63.2 and 65.3 in all-inside-dependent modified Mason-Allen patients, 55.6-78.4 in modified reverse Mason-Allen patients, and 76.7 in cinch-loop patients.

Conclusions: Patients undergoing simple stitch, all-inside-dependent modified Mason-Allen, modified reverse Mason-Allen, and cinch-loop transtibial pullout repair for MMPR tears all reported improvement in Lysholm and IKDC scores. Future prospective studies evaluating postoperative outcomes in patients undergoing MMPR repair based on suture configuration repair techniques are warranted to better determine optimal transtibial pullout repair treatment.

KEYWORDS: Root repair, Knee, Meniscus, Transtibial pullout repair.
INTRODUCTION

Tears of the medial meniscus posterior root (MMPR) compromise the stability of the meniscus, leading to meniscus extrusion, loss of hoop stress distribution, and increased contact pressures within the tibiofemoral articulation, resulting in the development of premature osteoarthritis. Biomechanical studies have demonstrated that untreated MMPR tears result in a functional state comparable to meniscal deficiency, with repairs effectively normalizing joints. Krych et al. observed that nonoperative treatment of MMPR tears led to rapid joint degradation based on Kellgren-Lawrence grade, increasing the rate of total knee arthroplasty (TKA) conversion, while partial meniscectomy did not confer any advantages over nonoperative management as a palliative treatment option. Patients without a repaired MMPR tear have also been reported to experience clinical failure in 87% of cases, resulting in a 31% requiring TKA conversion rate within the first five years following surgery. Accordingly, MMPR repair is generally recommended to appropriately indicated patients to improve function and slow arthritic progression.

Established techniques for MMPR repairs are grouped into two main categories: all-inside suture anchor repair vs. transtibial pull-out repair. Both techniques have reported clinical benefits without significant differences in load to failure; however, the use of an all-inside suture anchor repair is technically demanding relative to tibial tunnel drilling. Among transtibial pullout repair techniques, a variety of suture configurations have also been reported; however, there exists a paucity of research comparing clinical outcomes between suture techniques.

Given the critical role the medial meniscal root plays in joint biomechanics, understanding the benefits of each suture method may help better inform surgeons which technique yields improved outcomes and decreased failure rates. The purpose of this study was to compare the clinical outcomes following medial meniscus posterior root repairs using different suture configuration repair techniques. The authors hypothesized that there would be no difference in clinical outcomes between suture techniques.

MATERIALS AND METHODS

Search Strategy and Eligibility Criteria

A literature review was performed in accordance with the 2020 Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Two independent authors (J.L., S.A.) performed a comprehensive literature search using EMBASE, PubMed, and Scopus computerized databases to identify studies reporting clinical outcomes for patients undergoing repair of MMPR tears using a transtibial pull-out repair technique. Studies published from inception to November 2022 were searched. The systematic search criteria included the following search terms combined with Boolean operators: "medial meniscus", "root", "posterior root", "repair", "outcomes", and "trans-tibial". Inclusion criteria consisted of Level I to III clinical studies written in English or with English translation reporting clinical outcomes following MMPR repair using transtibial pull-out repair using one of the following suture configurations: simple stitch, all-inside-dependent modified Mason-Allen, modified reverse Mason-Allen, and cinch-loop (Figure 1). A simple stitch configuration includes passing two sutures through the root (Figure 2). An all-inside-dependent modified Mason-Allen technique includes placing one horizontal mattress suture and then a second suture across the first, with the first acting as a rip-stop. A modified reverse Mason-Allen is similar, except the horizontal mattress is placed from inferior to superior so that the suture limbs exit from the superior aspect of the meniscus leaflet rather than the inferior. A cinch-loop is a luggage tag stitch, where one limb of the suture is pulled through a pre-made loop on the other limb, forming the cinch. Nonclinical studies (i.e., cadaveric, animal, or biomechanical), review articles, abstracts, editorials, studies of level IV or V evidence, commentaries and studies not reporting on outcomes, suture configuration, studies not separating outcomes based on suture technique with overlapping cohorts were excluded.

Data Extraction and Statistical Analysis

Data from the selected studies was entered into a spreadsheet using Microsoft Excel version 16.63 (Microsoft Corp, Redmond, WA, USA). Categories for data collection included: article information (journal, year, level of evidence), patient demographics (patient age, sex, body mass index (BMI), and time from injury to surgery), surgical technique [number of sutures, number of tibial tunnels, size of the tibial tunnel(s) and tibial fixation method], mean follow up time, and patient-reported outcomes scores [Lysholm,
Figure 1. Medial meniscus posterior root repair using a transtibial pull-out repair (A) with two simple stitches all-inside modified Mason-Allen technique (B), modified reverse Mason-Allen technique (C), and cinch-loop technique (D).

Figure 2. Medial meniscus posterior root repair in a left knee using a transtibial pull-out repair with two simple stitches. MFC, medial femoral condyle; MM, medial meniscus; MTP, medial tibial plateau.
International Knee Documentation Committee (IKDC)]. Forest plots were created using Review Manager 5 (The Nordic Cochrane Center, Copenhagen, Denmark) to illustrate preoperative and postoperative Lysholm and IKDC scores for each technique. Heterogeneity was measured using the I^2 statistic. I^2 can be interpreted as follows: 0% to 25%: Low heterogeneity; 26% to 50%: Moderate heterogeneity; 51% to 75%: Substantial heterogeneity; 76% to 100%: Considerable heterogeneity.

Risk of Bias Assessment

To evaluate the risk of bias in the included studies, two investigators (J.L., D.S.) independently performed a quality assessment using the Newcastle-Ottawa Scale (NOS) score and the National Institute of Health (NIH) Quality Assessment score. Full details on the bias assessment can be found in Appendix 1 and Appendix 2.

RESULTS

Demographics

The initial search yielded a total of 1,645 articles, of which 672 duplicates were removed. Following title and abstract screening, 102 full-text articles were evaluated (Figure 3). Following the full-text screening, 12 studies9,16-26 (n=19 cohorts), consisting of 495 patients, were identified as meeting inclusion/exclusion criteria. The included studies were published between 2011 and 2022. The mean NOS score was 8.08 (range: 7-9), and the mean NIH Quality Assessment score was 11.75 (range: 10-13). Eight studies9,18-24 (n=242 patients; mean age range: 52.9-65.4 years) reported using a simple stitch technique, 3 studies20,21,26 (n=97 patients).

Figure 3. Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) diagram demonstrating study selection process.
patients; mean age range, 63.0-63.9 years) reported on all-inside-dependent modified Mason-Allen, 2 studies16,23 (n=88 patients; mean age range: 52.7-56.0 years) reported on modified reverse Mason-Allen, and 3 studies17,24,25 (n=68 patients; mean age range: 47.2-61.5 years) reported on cinch-loop technique. The mean duration of follow-up for simple stitch ranged from 12 to 125.9 months, all-inside-dependent modified Mason-Allen ranged from 24 to 16.6 months, modified reverse Mason-Allen ranged from 24 to 21.6 months, and cinch-loop ranged from 12 to 44.6 months (Appendix 3).

Clinical Outcome Scores

All twelve studies (n=495 patients) reported preoperative and postoperative Lysholm scores. The reported mean postoperative Lysholm score among simple stitch patients ranged from 73.4 to 92.5 points, vs. 84.7-85.9 points in all-inside-dependent modified Mason-Allen patients, 71.5-87.6 points in modified reverse Mason-Allen patients, and 81.8-88.8 points in cinch-loop patients (Figure 4). Ten studies9,16-23,26 (n=424 patients) consisting of 221 simple stitch patients, 97 all-inside-dependent modified Mason-Allen patients, 88 modified reverse Mason-Allen patients, and 18 cinch-loop patients reported preoperative and postoperative International Knee Documentation Committee (IKDC) scores (Figure 5). The reported mean postoperative IKDC score among simple stitch patients ranged from 59.2 to 91.8 points, vs. 63.2-65.3 points in all-inside-Dependent modified Mason-Allen patients, 55.6-78.4 points in Modified reverse Mason-Allen patients, and 76.7 points in cinch-loop patients (Appendix 4).

Figure 4. Forest plot illustrating Lysholm scores for each technique.
DISCUSSION

The most important finding from this systematic review report is that among the four suture techniques evaluating TPR, clinical improvement was observed in both Lysholm and IKDC scores at a minimum of 12-month follow-up.

While all four techniques resulted in patient-reported outcome (PRO) score improvement at follow-up, simple stitch, and cinch loop techniques were reported to yield higher mean Lysholm and IKDC scores at the final follow-up when compared to Mason-Allen techniques. Simple stitches have proven effective in root repair studies\(^\text{22,27}\) in terms of postoperative PRO scores and decreased joint space narrowing compared to nonoperative treatment or partial meniscectomy. As tissue available for suture passage is comparatively limited in the meniscal root, it is possible that the associated tissue trauma using either Mason-Allen configuration (must pass suture 3 times vs. only 2 times for simple stitch and loop cinch) may have a detrimental effect without yielding a clinical advantage.

Numerous studies\(^\text{5,6,27-29}\) report rapid arthritis progression in MMPR tears patients treated nonoperatively\(^\text{5,6}\) and following meniscectomy\(^\text{27-29}\), along with delayed repair. While successful root repair has been shown in the literature to slow joint degeneration,arthritic progression is not eliminated due to multiple factors, including partial root healing and incomplete restoration of native joint biomechanics (evidenced by residual extrusion). Suture configuration, therefore, may not be the primary factor dictateing outcomes, but rather the lack of restored anatomy. Krych et al\(^\text{13}\) demonstrated that extrusion might be due to the presence of persistent meniscotibial ligament tears (as part of a cascade leading to MMPR tears), which implies that additional fixation is required beyond the root to restore native kinematics. Using a centralization stitch may not only decrease extrusion but could synergistically restore contact mechanics of the knee\(^\text{30}\). This improved repair construct may help to improve the ability of the meniscus to absorb and transmit load better, further slowing KL progression, regardless of the suture configuration used for the root repair\(^\text{31}\).

Figure 5. Forest plot illustrating the International Knee Documentation Committee (IKDC) scores for each technique.
Limitations

The results of this study must be interpreted through the context of its limitations. First, due to the limited number of available prospective investigations, reported outcomes were derived solely from level III studies. As a result, statistical outcomes were reported as descriptive summaries of the means, limiting the ability to make meaningful statistical comparisons between transtibial pullout repair techniques. Second, due to the small sample size, a minimum follow-up was not required for the eligibility criteria. The mean follow-up of included studies ranged from 12 to 84.8 months, leading to a substantial amount of variation between patient-reported outcomes, complication rates, incomplete healing, and conversion rates to TKA. Furthermore, since the rates of transtibial pullout repair failure increase with time, the short duration of follow-up in some studies may have impacted the current findings. Third, the lack of comparable systematic reviews comparing the outcomes of different transtibial pullout repair techniques, makes it difficult to assess the validity of the current study’s findings. Additionally, as most studies aggregated reported patient outcomes, determining risk factors for transtibial pullout repair failure by technique was not able to be reliably performed. Lastly, our search strategy and eligibility criteria may have unintentionally excluded studies with eligible cohorts.

CONCLUSIONS

Patients undergoing simple stitch, all-inside-dependent modified Mason-Allen, modified reverse Mason-Allen, and cinch-loop transtibial pullout repair for MMPR tears all reported mean improvement in Lysholm and IKDC scores. Future prospective studies evaluating postoperative outcomes in patients undergoing MMPR repair based on suture technique are warranted to better determine optimal transtibial pullout repair treatment.

Conflict of Interest:
The authors declare that they have no conflict of interest.

Funding:
Open access funding provided by Università degli Studi Magna Graecia di Catanzaro within the CRUI-CARE Agreement.

Availability of Data and Materials:
All data generated or analyzed during this study are included in this manuscript.

Informed Consent:
Not applicable.

Ethics Approval:
Not applicable.

Authors’ Contributions:
Each author fulfills each of the authorship requirements. All authors have contributed equally.

REFERENCES

8 TRANSTIBIAL PULLOUT ROOT REPAIR OUTCOMES

